
Some Kubernetes mistakes to avoid

Several categories

Security
Mistakes

Configuration
Mistakes

Scheduling
Mistakes

Observability
Mistakes

Cluster
Management

Mistakes

Application
Deployment

Mistakes

● Implementing RBAC is important to ensure the principles of least privilege
● Several resources

○ rules are defined in Role & ClusterRole
○ Role & ClusterRole are associated to user / group / serviceaccount using RoleBinding &

ClusterRoleBinding

Not using RBAC

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 namespace: development
 name: pod-management
rules:
- apiGroups: ["apps"]
 resources: ["deploy"]
 verbs: ["get", "list", “create”, “delete”]

Security
Mistakes

Example of a Role
providing Pods
management
capabilities

● A privileged container is similar to a process running directly on the host
● Follow the principle of least privilege by setting minimal necessary

permissions to containers

Using privileged containers

apiVersion: v1
kind: Pod
metadata:
 name: overprivileged
spec:
 containers:
 - name: nginx
 image: nginx:1.24
 securityContext:
 privileged: true

Security
Mistakes

● Configure containers to run as non-root using SecurityContext

Using container with root privilege

apiVersion: v1
kind: Pod
metadata:
 name: demo
spec:
 securityContext:
 runAsUser: 10001
 runAsNonRoot: true
 containers:
 - name: api
 image: registry.gitlab.com/web-hook/api:v1.0.39

Security
Mistakes

Use private container registries to secure and manage container images as public
registries can increase security risks

Not using private container registries
Security
Mistakes

Use network policies to create segmented network zones within the cluster

Not using network segmentation

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: db-policy
spec:
 podSelector:
 matchLabels:
 tiers: db
 policyTypes:

- Ingress
 ingress:
 - from:
 - podSelector:
 matchLabels:
 tiers: backend

Security
Mistakes

Example of a NetworkPolicy which only enables ingress
traffic from Pods with a specific label

● Use mTLS to encrypt data in transit with a sidecar container
● Might need to consider Service Mesh for this purpose

Not encrypted data in transit
Security
Mistakes

● Implement and enforce Pod Security Admission using Pod Security Standard
○ Several types

■ Privileged

■ Restricted

■ Baseline

○ https://kubernetes.io/docs/concepts/security/pod-security-standards/

● OPA Gatekeeper

● Kyverno

Not enforcing security policy
Security
Mistakes

https://kubernetes.io/docs/concepts/security/pod-security-standards/
https://open-policy-agent.github.io/gatekeeper
https://kyverno.io

● Create and assign specific service accounts with appropriate permissions

● Not all application needs to communicate with the API Server

● Do not mount service account token by default

○ ServiceAccount.automountServiceAccountToken

○ Pod.spec.automountServiceAccountToken

Not using ServiceAccount
Security
Mistakes

Scan container images to limit the risks of CVEs
● Scanning can be done within the CI and regularly in the registry
● Trivy from aquasec

Not scanning container images for CVEs
Security
Mistakes

https://trivy.dev/

Usage of tools like Falco from Sysdig to detect anomalies at runtime

Not using runtime security tools
Security
Mistakes

https://falco.org/
https://sysdig.com/

AppArmor defines a profile to restrict access to resources

Not using AppArmor
Security
Mistakes

#include <tunables/global>

profile k8s-deny-write flags=(attach_disconnected)
{
 #include <abstractions/base>

 file,

 # Deny all file writes.
 deny /** w,
}

Example of an AppArmor profile which blocks all file write operations

apiVersion: v1
kind: Pod
metadata:
 name: www
spec:
 containers:
 - name: nginx
 image: nginx
 securityContext:
 appArmorProfile:
 type: Localhost
 localhostProfile: k8s-deny-write

Note: before 1.30, the AppArmor profile is set using the Pod’s annotation:
container.apparmor.security.beta.kubernetes.io/nginx=localhost/k8s-deny-write

Not configuring a default seccomp profile
Security
Mistakes

{
 "defaultAction": "SCMP_ACT_ERRNO",
 "architectures": [
 "SCMP_ARCH_X86_64",
 "SCMP_ARCH_X86"
],
 "syscalls": [
 {
 "names": [
 "accept4",
 …
 "getrlimit"
],
 "action": "SCMP_ACT_ALLOW"
 }
]
}

apiVersion: v1
kind: Pod
metadata:
 name: www
spec:
 containers:
 - name: nginx
 image: nginx
 securityContext:
 seccompProfile:
 type: RuntimeDefault

Example of a Seccomp whitelist profile Pod using the seccomp profile of the container runtime

Seccomp (Secure Computing Mode) restrict system calls to the underlying Kernel

Usage of third tools to assess compliance
● kube-bench verifies CIS benchmark
● Kubescape perform checks against several frameworks

○ NSA / MITRE ATT&CK / CIS Benchmark

Ignoring compliance standards
Security
Mistakes

Use EncryptionConfiguration resource to encrypt Secret at rest

Secret not encrypted at rest

apiVersion: apiserver.config.k8s.io/v1
kind: EncryptionConfiguration
resources:
 - resources:
 - secrets
 providers:
 - aesgcm:
 keys:
 - name: key1
 secret: c2VjcmV0IGlzIHNlY3VyZQ==
 - identity: {}

Security
Mistakes

Define resource requests and limits for all pods
● ensures proper resource allocation
● avoid resource contention

Not setting requests and limits

apiVersion: v1
kind: Pod
metadata:
 name: podinfo
spec:
 containers:
 - name: podinfo
 image: stefanprodan/podinfo
 resources:
 limits:
 cpu: 1m
 memory: 16Mi
 requests:
 cpu: 1m
 memory: 16Mi

Configuration
Mistakes

● Use specific image tags and update them regularly
● Do not use latest tag as tomorrow’s latest can be different than today’s

Using the latest tag

apiVersion: v1
kind: Pod
metadata:
 name: www
spec:
 containers:
 - name: www
 image: nginx:1.24

Configuration
Mistakes

apiVersion: v1
kind: Pod
metadata:
 name: www
spec:
 containers:
 - name: www
 image: nginx:latest

Organize resources using Namespaces based on environment, team, or application to
avoid conflicts and management issues

Using the default Namespace for all resources

$ kubectl get ns
NAME STATUS AGE
argocd Active 36d
cert-manager Active 36d
default Active 36d
events-exporter Active 30d
kube-node-lease Active 36d
kube-public Active 36d
kube-system Active 36d
local-path-provisioner Active 36d
myapp Active 35d
nats Active 36d
traefik Active 36d

Configuration
Mistakes

Applications are often deployed in their own namespaces

Configure liveness and readiness probes to automatically manage pod health

Not using livenessProbe and readinessProbe

apiVersion: v1
kind: Pod
metadata:
 name: podinfo
spec:
 containers:
 - name: podinfo
 image: stefanprodan/podinfo
 livenessProbe:
 httpGet:
 path: /healthz
 port: 9898
 initialDelaySeconds: 3
 periodSeconds: 10
 readinessProbe:
 httpGet:
 path: /readyz
 port: 9898
 initialDelaySeconds: 3
 periodSeconds: 5

Configuration
Mistakes

● A livenessProbe triggers
the restart of a container if
it fails

● A readinessProbe makes
sure a container is ready to
receive traffic

Use ConfigMaps and Secrets to manage configurations externally

Hardcoding configurations in Pods

apiVersion: v1
kind: ConfigMap
metadata:
 name: nginx-config
data:
 nginx.conf: |
 user www-data;
 worker_processes 4;
 pid /run/nginx.pid;
 events {
 worker_connections 768;
 }
 http {
 server {
 listen *:80;
 location / {
 proxy_pass http://api:5000;
 }
 }
 }

apiVersion: v1
kind: Pod
metadata:
 name: proxy
spec:
 containers:
 - name: proxy
 image: nginx:1.24
 ports:
 - containerPort: 80
 volumeMounts:
 - name: config
 mountPath: "/etc/nginx/"
 volumes:
 - name: config
 configMap:
 name: nginx-config

Configuration
Mistakes

Standardize configurations using tools like Helm or Kustomize

Inconsistent configuration across environments

$ tree my-app/
my-app/
├── Chart.yaml
├── charts
├── templates
│ ├── NOTES.txt
│ ├── _helpers.tpl
│ ├── deployment.yaml
│ ├── hpa.yaml
│ ├── ingress.yaml
│ ├── service.yaml
│ ├── serviceaccount.yaml
│ └── tests
│ └── test-connection.yaml
└── values.yaml

Configuration
Mistakes

Using Helm to deploy an application Using Kustomize to deploy an application

https://helm.sh
https://kustomize.io

Configure Horizontal Pod Autoscaler (HPA) to scale applications based on metrics

Not using automatic scaling

apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
 name: hpa-v2
spec:
 scaleTargetRef:
 apiVersion: apps/v1
 kind: Deployment
 name: www
 minReplicas: 2
 maxReplicas: 10
 metrics:
 - type: Resource
 resource:
 name: cpu
 target:
 type: Utilization
 averageUtilization: 50

Configuration
Mistakes

Note: Keda (CNCF Graduated project)
https://keda.sh extends the
functionalities of the HPA

https://keda.sh

● Configure anti-affinity rules to distribute pods across nodes
● Prevents Pods from being placed on the same nodes which could lead to high

availability issues

Not using anti-affinity rules for Pods Scheduling
Mistakes

mysql-0
master

mysql-1
slave

mysql-1
slave

Use appropriate rules / properties for Pod placement

Deploying a Pod to the wrong Node

● nodeSelector

● nodeAffinity

● podAffinity / podAntiAffinity

● topologySpreadConstraints

● taint / toleration

● ressources disponibles

● priorityClass

● runtimeClass

?

disktype=ssd

??

disktype=ssd

Scheduling
Mistakes

Taints and tolerations control Pod placement based on node conditions

Not using Taints and Tolerations correctly Scheduling
Mistakes

The controlplane node has the default taint
node-role.kubernetes.io/controlplane:NoSchedule

Pods which do not tolerate the Taints cannot be
scheduled on the controlplane

without
toleration

with toleration

X
✔

http://node-role.kubernetes.io/controlplane:NoSchedule

Use balanced pod placement strategies and monitor node utilization
Exemple: Descheduler https://github.com/kubernetes-sigs/descheduler

Overloading specific nodes Scheduling
Mistakes

https://github.com/kubernetes-sigs/descheduler

Set pod priorities and enable preemption to ensure critical pods are scheduled

Ignoring pod priority and preemption Scheduling
Mistakes

apiVersion: scheduling.k8s.io/v1
kind: PriorityClass
metadata:
 name: critical-priority
value: 1000
globalDefault: false
description: "Class for critical pods"

apiVersion: v1
kind: Pod
metadata:
 name: critical-pod
spec:
 priorityClassName: critical-priority
 containers:
 - name: critical-container
 image: tech/api:1.24

Note: preemption enabled by default, can be disabled on per Pod basis, eg
to make sure a critical pod is never replaced

Deploy nodes across multiple clouds / regions / zones for high availability

Not considering geographic placement of nodes Scheduling
Mistakes

Deployment of a cluster across several AZ in the same region (source Scaleway)

Implement a monitoring and logging solutions and use centralized logging systems

Lack of monitoring and logging Observability
Mistakes

Set up alerting rules based on monitoring metrics to notify of potential issues

Lack of alerting mechanisms

AlertManager

Observability
Mistakes

● Enable audit logs to keep track of requests done against the API Server
● Available stages

○ RequestReceived / ResponseStarted / ResponseComplete / Panic
● Available levels

○ None / Metadata / Request / RequestResponse

Not enabling Kubernetes auditing Observability
Mistakes

apiVersion: audit.k8s.io/v1
kind: Policy
rules:
- level: Metadata

Sample Policy logging all requests at the Metadata level

Regularly upgrade to the latest stable version of Kubernetes as running outdated
Kubernetes versions can lead to security and compatibility issues

Not following the latest version and upgrading often Cluster
Management

Mistakes

Migrate to the latest stable APIs as they become available as using deprecated APIs
can lead to future compatibility issues

Using outdated APIs Cluster
Management

Mistakes

$ kubectl api-versions
apps/v1
authentication.k8s.io/v1
authorization.k8s.io/v1
autoscaling/v1
autoscaling/v2
…
policy/v1
rbac.authorization.k8s.io/v1
scheduling.k8s.io/v1
storage.k8s.io/v1
v1

Consider using managed Kubernetes services as Managing Kubernetes clusters
manually increases operational overhead

Not using managed services Cluster
Management

Mistakes

Manual vs managed clusters

● Use IaC tools like Terraform or

Pulumi instead of manual cluster

management (which can lead to

inconsistencies and errors)

● IaC tools allow to keep cluster

specification in VCS (Git)

Not using IaC Cluster
Management

Mistakes

name: sks
runtime: yaml
description: SKS cluster management
outputs:
 kubeConfig: ${kubeconfig.kubeconfig}
resources:
 …
 cluster:
 type: exoscale:SksCluster
 properties:
 autoUpgrade: false
 cni: cilium
 description: A Kubernetes cluster on Exoscale
 exoscaleCcm: true
 exoscaleCsi: true
 metricsServer: true
 serviceLevel: starter
 name: sks-${pulumi.stack}
 zone: ${zone}
 version: ${version}
 nodepool:
 type: exoscale:SksNodepool
 properties:
 clusterId: ${cluster.id}
 name: sks-${pulumi.stack}-${nodepoolSuffix}
 zone: ${cluster.zone}
 instanceType: ${instanceType}
 size: ${size}
 securityGroupIds:
 - ${securityGroup.id}

Extract of Pulumi YAML descriptor

https://www.pulumi.com

● Use deployment models like blue-green, canary, or rolling updates deployment
strategies to reduce downtime and risk

● Argo Rollout (https://argoproj.github.io/rollouts/) provides advanced upgrade
strategies

Not employing deployment models Application
Deployment

Mistakes

https://argoproj.github.io/rollouts/

● Trivy (22k+ stars) - https://github.com/aquasecurity/trivy

● kubesec (1.2k stars) - https://github.com/controlplaneio/kubesec

● kube-score (2.7k stars) - https://github.com/zegl/kube-score

● checkov (6.8k stars) - https://github.com/bridgecrewio/checkov

● …

Not scanning manifests before applying them Application
Deployment

Mistakes

https://github.com/aquasecurity/trivy
https://github.com/controlplaneio/kubesec
https://github.com/zegl/kube-score
https://github.com/bridgecrewio/checkov

Use ConfigMaps and Secrets to manage configurations separately from application
code as hardcoded configurations is bad practice in term of security plus it impacts
portability

Not managing configurations separately from code Application
Deployment

Mistakes

CNCF hosts different categories of projects (storage / networking / observability /
security / database / …)

Not following CNCF ecosystem

CNCF landscape is huge, it contains
many projects. Some of them could
probably be integrated in your tech
stack https://landscape.cncf.io

https://landscape.cncf.io

This is a non-exhaustive list
Suggestions are welcome

😃

